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Now, by assumption, the sphere is small enough that P does not vary signif-
icantly over its volume, so the term /left out of the integral in Eq. 4.17 corre-
sponds to the field at the center of a uniformly polarized sphere, to wit: —(1/3€p)P
(Eq. 4.14). But this is precisely what E;, (Eq. 4.18) puts back in! The macroscopic
field, then, is given by the potential

Vi) = — /P(r/)"’dz’, (4.19)

4meg 22

where the integral runs over the entire volume of the dielectric. This is, of course,
what we used in Sect. 4.2.1; without realizing it, we were correctly calculating
the averaged, macroscopic field, for points inside the dielectric.

You may have to reread the last couple of paragraphs for the argument to sink
in. Notice that it all revolves around the curious fact that the average field over
any sphere (due to the charge inside) is the same as the field at the center of a
uniformly polarized sphere with the same total dipole moment. This means that no
matter how crazy the actual microscopic charge configuration, we can replace it
by a nice smooth distribution of perfect dipoles, if all we want is the macroscopic
(average) field. Incidentally, while the argument ostensibly relies on the spherical
shape I chose to average over, the macroscopic field is certainly independent of
the geometry of the averaging region, and this is reflected in the final answer,
Eq. 4.19. Presumably one could reproduce the same argument for a cube or an
ellipsoid or whatever—the calculation might be more difficult, but the conclusion
would be the same.

4.3 B THE ELECTRIC DISPLACEMENT

4.3.1 H Gauss’s Law in the Presence of Dielectrics

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of
(bound) charge, p, = —V - P within the dielectric and o;, = P - i on the surface.
The field due to polarization of the medium is just the field of this bound charge.
We are now ready to put it all together: the field attributable to bound charge plus
the field due to everything else (which, for want of a better term, we call free
charge, pr). The free charge might consist of electrons on a conductor or ions
embedded in the dielectric material or whatever; any charge, in other words, that
is not a result of polarization. Within the dielectric, the total charge density can
be written:

P =pp+ P, (4.20)
and Gauss’s law reads
eV-E=p=p+pr ==V -P+py,

where E is now the fotal field, not just that portion generated by polarization.
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It is convenient to combine the two divergence terms:

The expression in parentheses, designated by the letter D,

D = ¢E +P, 421

is known as the electric displacement. In terms of D, Gauss’s law reads

V.D=p;. (4.22)

or, in integral form,

55 D.-da=Q,,, (4.23)

where Q denotes the total free charge enclosed in the volume. This is a par-
ticularly useful way to express Gauss’s law, in the context of dielectrics, because
it makes reference only to free charges, and free charge is the stuff we control.
Bound charge comes along for the ride: when we put the free charge in place,
a certain polarization automatically ensues, by the mechanisms of Sect. 4.1, and
this polarization produces the bound charge. In a typical problem, therefore, we
know p ¢, but we do not (initially) know py; Eq. 4.23 lets us go right to work with
the information at hand. In particular, whenever the requisite symmetry is present,
we can immediately calculate D by the standard Gauss’s law methods.

Example 4.4. A long straight wire, carrying uniform line charge 1, is surrounded
by rubber insulation out to a radius a (Fig. 4.17). Find the electric displacement.

Gaussian surface

FIGURE 4.17

Solution
Drawing a cylindrical Gaussian surface, of radius s and length L, and applying
Eq. 4.23, we find

DQ2nsL) = AL.
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Therefore,

AL
D=—s. (4.24)
21s

Notice that this formula holds both within the insulation and outside it. In the
latter region, P = 0, so
1 A

E=—D=

S, fors > a.
€ 2meys

Inside the rubber, the electric field cannot be determined, since we do not know P.

It may appear to you that I left out the surface bound charge o}, in deriving
Eq. 4.22, and in a sense that is true. We cannot apply Gauss’s law precisely at the
surface of a dielectric, for here p;, blows up,® taking the divergence of E with it.
But everywhere else the logic is sound, and in fact if we picture the edge of the
dielectric as having some finite thickness, within which the polarization tapers
off to zero (probably a more realistic model than an abrupt cut-off anyway), then
there is no surface bound charge; p;, varies rapidly but smoothly within this “skin,”
and Gauss’s law can be safely applied everywhere. At any rate, the integral form
(Eq. 4.23) is free from this “defect.”

Problem 4.15 A thick spherical shell (inner radius a, outer radius b) is made of
dielectric material with a “frozen-in” polarization

k
P(r)=-r,
r

where k is a constant and r is the distance from the center (Fig. 4.18). (There is
no free charge in the problem.) Find the electric field in all three regions by two
different methods:

dp,

L P
S

V - -
(a) Sphere (b) Needle (c) Wafer

P
A

#p

FIGURE 4.18 FIGURE 4.19

The polarization drops abruptly to zero outside the material, so its derivative is a delta function (see
Prob. 1.46). The surface bound charge is precisely this term—in this sense it is actually included in
pb, but we ordinarily prefer to handle it separately as oy.
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(a) Locate all the bound charge, and use Gauss’s law (Eq. 2.13) to calculate the
field it produces.

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second
method is much faster, and it avoids any explicit reference to the bound charges.]

Problem 4.16 Suppose the field inside a large piece of dielectric is Eo, so that the
electric displacement is Dy = ¢Eq 4 P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find
the field at the center of the cavity in terms of Ey and P. Also find the displace-
ment at the center of the cavity in terms of Dy and P. Assume the polarization
is “frozen in,” so it doesn’t change when the cavity is excavated.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).
(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19¢).

Assume the cavities are small enough that P, E,, and Dy are essentially uniform.
[Hint: Carving out a cavity is the same as superimposing an object of the same
shape but opposite polarization.]

4.3.2 H A Deceptive Parallel

Equation 4.22 looks just like Gauss’s law, only the fotal charge density p is
replaced by the free charge density p;, and D is substituted for ¢oE. For this
reason, you may be tempted to conclude that D is “just like” E (apart from the
factor €p), except that its source is p instead of p: “To solve problems involving
dielectrics, you just forget all about the bound charge—calculate the field as you
ordinarily would, only call the answer D instead of E.” This reasoning is seduc-
tive, but the conclusion is false; in particular, there is no “Coulomb’s law” for D:

| "
D(r) # E/%pf(r/)dt/'

The parallel between E and D is more subtle than that.

For the divergence alone is insufficient to determine a vector field; you need to
know the curl as well. One tends to forget this in the case of electrostatic fields
because the curl of E is always zero. But the curl of D is not always zero.

VxD=¢(VXE)+(VxP)=V xP, (4.25)

and there is no reason, in general, to suppose that the curl of P vanishes. Some-
times it does, as in Ex. 4.4 and Prob. 4.15, but more often it does not. The
bar electret of Prob. 4.11 is a case in point: here there is no free charge any-
where, so if you really believe that the only source of D is py, you will be
forced to conclude that D = 0 everywhere, and hence that E = (—1/¢()P inside
and E = 0 outside the electret, which is obviously wrong. (I leave it for you to
find the place where V x P 2 0 in this problem.) Because V x D # 0, more-
over, D cannot be expressed as the gradient of a scalar—there is no “potential”
for D.
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Advice: When you are asked to compute the electric displacement, first look for
symmetry. If the problem exhibits spherical, cylindrical, or plane symmetry, then
you can get D directly from Eq. 4.23 by the usual Gauss’s law methods. (Evidently
in such cases V x P is automatically zero, but since symmetry alone dictates the
answer, you’re not really obliged to worry about the curl.) If the requisite sym-
metry is absent, you’ll have to think of another approach, and, in particular, you
must not assume that D is determined exclusively by the free charge.

4.3.3 H Boundary Conditions

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D.
Equation 4.23 tells us the discontinuity in the component perpendicular to an
interface:

l)l

above

— Dizow = 07, (4.26)
while Eq. 4.25 gives the discontinuity in parallel components:

I _pl I
- Dbelow - Pabove - Pbelow‘

D!

above

(4.27)

In the presence of dielectrics, these are sometimes more useful than the corre-
sponding boundary conditions on E (Egs. 2.31 and 2.32):

1
Ej_bove - Eé_elow = 6_007 (4.28)
and
Il Il
Eabove - Ebelow =0. (4.29)

You might try applying them, for example, to Probs. 4.16 and 4.17.

Problem 4.17 For the bar electret of Prob. 4.11, make three careful sketches: one
of P, one of E, and one of D. Assume L is about 2a. [Hint: E lines terminate on
charges; D lines terminate on free charges.]

4.4 B LINEAR DIELECTRICS

4.4.1 W Susceptibility, Permittivity, Dielectric Constant

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt
only with the effects of polarization. From the qualitative discussion of Sect. 4.1,
though, we know that the polarization of a dielectric ordinarily results from an
electric field, which lines up the atomic or molecular dipoles. For many sub-
stances, in fact, the polarization is proportional to the field, provided E is not
too strong:

P = cx.E. (4.30)
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The constant of proportionality, x., is called the electric susceptibility of the
medium (a factor of €y has been extracted to make y, dimensionless). The value of
X depends on the microscopic structure of the substance in question (and also on
external conditions such as temperature). I shall call materials that obey Eq. 4.30
linear dielectrics.’

Note that E in Eq. 4.30 is the fotal field; it may be due in part to free charges
and in part to the polarization itself. If, for instance, we put a piece of dielectric
into an external field E(, we cannot compute P directly from Eq. 4.30; the external
field will polarize the material, and this polarization will produce its own field,
which then contributes to the total field, and this in turn modifies the polarization,
which . .. Breaking out of this infinite regress is not always easy. You’ll see some
examples in a moment. The simplest approach is to begin with the displacement,
at least in those cases where D can be deduced directly from the free charge
distribution.

In linear media we have

D =¢E +P = ¢E+ ¢x.E =¢€o(l + x.)E, (4.31)
so D is also proportional to E:
D =¢E, (4.32)
where
€= el + xeo). (4.33)

This new constant € is called the permittivity of the material. (In vacuum, where
there is no matter to polarize, the susceptibility is zero, and the permittivity is €.
That’s why ¢ is called the permittivity of free space. I dislike the term, for it
suggests that the vacuum is just a special kind of linear dielectric, in which the
permittivity happens to have the value 8.85 x 1012 C2/N-m?.) If you remove a
factor of €, the remaining dimensionless quantity

=14y =— (4.34)

is called the relative permittivity, or dielectric constant, of the material. Dielec-
tric constants for some common substances are listed in Table 4.2. (Notice that ¢,
is greater than 1, for all ordinary materials.) Of course, the permittivity and the
dielectric constant do not convey any information that was not already available
in the susceptibility, nor is there anything essentially new in Eq. 4.32; the physics
of linear dielectrics is all contained in Eq. 4.30.%

7In modern optical applications, especially, nonlinear materials have become increasingly important.
For these there is a second term in the formula for P as a function of E—typically a cubic term. In gen-
eral, Eq. 4.30 can be regarded as the first (nonzero) term in the Taylor expansion of P in powers of E.
8 As long as we are engaged in this orgy of unnecessary terminology and notation, I might as well
mention that formulas for D in terms of E (Eq. 4.32, in the case of linear dielectrics) are called
constitutive relations.
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Dielectric Dielectric
Material Constant ~ Material Constant
Vacuum 1 Benzene 2.28
Helium 1.000065 Diamond 5.7-5.9
Neon 1.00013 Salt 5.9
Hydrogen (H,) 1.000254  Silicon 11.7
Argon 1.000517  Methanol 33.0
Air (dry) 1.000536  Water 80.1
Nitrogen (N3) 1.000548  Ice (-30° C) 104

Water vapor (100° C)  1.00589 KTaNbO3 (0° C) 34,000

TABLE 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm,
20° C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press,
2010).

Example 4.5. A metal sphere of radius a carries a charge Q (Fig. 4.20). It is
surrounded, out to radius b, by linear dielectric material of permittivity €. Find
the potential at the center (relative to infinity).

Solution

To compute V, we need to know E; to find E, we might first try to locate the
bound charge; we could get the bound charge from P, but we can’t calculate P
unless we already know E (Eq. 4.30). We seem to be in a bind. What we do know
is the free charge Q, and fortunately the arrangement is spherically symmetric, so
let’s begin by calculating D, using Eq. 4.23:

D= Lf', for all points r > a.
4mr?

(Inside the metal sphere, of course, E=P =D = 0.) Once we know D, it is a
trivial matter to obtain E, using Eq. 4.32:

0 r, for a<r<b,
4er?
E= 0
—= 1, for r > b.
4 egr?

X

a

FIGURE 4.20
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The potential at the center is therefore

0 b a 0
—_ . [ Q — —Q —

V= /oo E.dl= /OO <4T(60}’2) dr /b (4ner2) dr /a O dr
_e(r 1t
T 4n <60b e eb) '

As it turns out, it was not necessary for us to compute the polarization or the
bound charge explicitly, though this can easily be done:

%ka

P=¢yx.E = ,
%™ = drer?

in the dielectric, and hence

pp=—V-P=0,

while

€

0XeQ , at the outer surface,
N 4 eb?
O'b = P N =

—€ .

LEQ, at the inner surface.
4rea’

Notice that the surface bound charge at a is negative (h points outward with
respect to the dielectric, which is +T at b but —rI at a). This is natural, since
the charge on the metal sphere attracts its opposite in all the dielectric molecules.
It is this layer of negative charge that reduces the field, within the dielectric, from
1/4me0(Q/r?)F to 1/4we(Q/r*)E. In this respect, a dielectric is rather like an
imperfect conductor: on a conducting shell the induced surface charge would be
such as to cancel the field of Q completely in the region a < r < b; the dielectric
does the best it can, but the cancellation is only partial.

You might suppose that linear dielectrics escape the defect in the parallel
between E and D. Since P and D are now proportional to E, does it not fol-
low that their curls, like E’s, must vanish? Unfortunately, it does not, for the line
integral of P around a closed path that straddles the boundary between one type of
material and another need not be zero, even though the integral of E around the
same loop must be. The reason is that the proportionality factor €y, is different
on the two sides. For instance, at the interface between a polarized dielectric and
the vacuum (Fig. 4.21), P is zero on one side but not on the other. Around this

P=0

Vacuum
Dielectric

P+0

FIGURE 4.21
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loop f P - dl # 0, and hence, by Stokes’ theorem, the curl of P cannot vanish
everywhere within the loop (in fact, it is infinite at the boundary).’

Of course, if the space is entirely filled with a homogeneous'? linear dielectric,
then this objection is void; in this rather special circumstance

V:-D=p; and VxD=0,
so D can be found from the free charge just as though the dielectric were not there:
D = K.,

where E,, is the field the same free charge distribution would produce in the
absence of any dielectric. According to Eqs. 4.32 and 4.34, therefore,

1 1
E=-D=—E.. (4.35)
€

Conclusion: When all space is filled with a homogeneous linear dielectric, the
field everywhere is simply reduced by a factor of one over the dielectric constant.
(Actually, it is not necessary for the dielectric to fill all space: in regions where
the field is zero anyway, it can hardly matter whether the dielectric is present or
not, since there’s no polarization in any event.)

For example, if a free charge ¢ is embedded in a large dielectric, the field it
produces is

1 q.
E- — 9% (4.36)

4re r?

(that’s €, not €p), and the force it exerts on nearby charges is reduced accord-
ingly. But it’s not that there is anything wrong with Coulomb’s law; rather, the
polarization of the medium partially “shields” the charge, by surrounding it with
bound charge of the opposite sign (Fig. 4.22).!!

FIGURE 4.22

9Putting that argument in differential form, Eq. 4.30 and product rule 7 yield V x P = —¢yE x (Vx.),
so the problem arises when V ., is not parallel to E.

10A homogeneous medium is one whose properties (in this case the susceptibility) do not vary with
position.

"n guantum electrodynamics, the vacuum itself can be polarized, and this means that the effective
(or “renormalized”) charge of the electron, as you might measure it in the laboratory, is not its true
(“bare”) value, and in fact depends slightly on how far away you are!
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Example 4.6. A parallel-plate capacitor (Fig. 4.23) is filled with insulating
material of dielectric constant €. What effect does this have on its capacitance?

Solution

Since the field is confined to the space between the plates, the dielectric will
reduce E, and hence also the potential difference V, by a factor 1 /¢,.. Accordingly,
the capacitance C = Q/V is increased by a factor of the dielectric constant,

C = ¢€,Cyy. 4.37)

This is, in fact, a common way to beef up a capacitor.

~+— Dielectric

FIGURE 4.23

A crystal is generally easier to polarize in some directions than in others,'? and
in this case Eq. 4.30 is replaced by the general linear relation

P, = EO(XeXX E, + Xeyy Ey + Xe.. E,)
Py = EO(Xe),X E, + KXeyy Ey + Xey. E;) ’ (4.38)
P, = EO(XeZX E. + Xeyy Ey + Xe.. E;)

just as Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The nine
coefficients, xe,,, Xe,,» - - - » constitute the susceptibility tensor.

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24)
is filled with two slabs of linear dielectric material. Each slab has thickness a, so
the total distance between the plates is 2a. Slab 1 has a dielectric constant of 2, and
slab 2 has a dielectric constant of 1.5. The free charge density on the top plate is o
and on the bottom plate —o'.

12A medium is said to be isotropic if its properties (such as susceptibility) are the same in all
directions. Thus Eq. 4.30 is the special case of Eq. 4.38 that holds for isotropic media. Physicists tend
to be sloppy with their language, and unless otherwise indicated the term “linear dielectric” implies
“isotropic linear dielectric,” and suggests “homogeneous isotropic linear dielectric.” But technically,
“linear” just means that at any given point, and for E in a given direction, the components of P are
proportional to E—the proportionality factor could vary with position and/or direction.
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+0
-+— Slab 1

~— Slab2

«— O

FIGURE 4.24

(a) Find the electric displacement D in each slab.

(b) Find the electric field E in each slab.

(c) Find the polarization P in each slab.

(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.

(f) Now that you know all the charge (free and bound), recalculate the field in each
slab, and confirm your answer to (b).

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric
constant ¢,, to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is
the capacitance increased when you distribute the material as in Fig. 4.25(a)? How
about Fig. 4.25(b)? For a given potential difference V between the plates, find E,
D, and P, in each region, and the free and bound charge on all surfaces, for both
cases.

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform
free charge density p. Find the potential at the center of the sphere (relative to
infinity), if its radius is R and the dielectric constant is €,.

(@ (b)
FIGURE 4.25
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Problem 4.21 A certain coaxial cable consists of a copper wire, radius a, sur-
rounded by a concentric copper tube of inner radius ¢ (Fig. 4.26). The space between
is partially filled (from b out to ¢) with material of dielectric constant €,, as shown.
Find the capacitance per unit length of this cable.

a

FIGURE 4.26

4.4.2 H Boundary Value Problems with Linear Dielectrics

In a (homogeneous isotropic) linear dielectric, the bound charge density (pp) is
proportional to the free charge density (,Of):13

Xe Xe
——_V.P=-V. 2°D) = — . 4.39
ob (606 ) <1+Xe)pf (4.39)

In particular, unless free charge is actually embedded in the material, p = 0, and
any net charge must reside at the surface. Within such a dielectric, then, the
potential obeys Laplace’s equation, and all the machinery of Chapter 3 carries
over. It is convenient, however, to rewrite the boundary conditions in a way that
makes reference only to the free charge. Equation 4.26 says

€ €
€above Eabove — €below Ebelow =0r, (440)

or (in terms of the potential),

d Vabove el Vbelow

— €below

on an

= —oy, (4.41)

€above

whereas the potential itself is, of course, continuous (Eq. 2.34):

Vavove = Voelow- (442)

13This does not apply to the surface charge (03), because . is not independent of position (obviously)
at the boundary.
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Example 4.7. A sphere of homogeneous linear dielectric material is placed in
an otherwise uniform electric field Eq (Fig. 4.27). Find the electric field inside the
sphere.

E,

FIGURE 4.27

Solution
This is reminiscent of Ex. 3.8, in which an uncharged conducting sphere was
introduced into a uniform field. In that case, the field of the induced charge
canceled E( within the sphere; in a dielectric, the cancellation (from the bound
charge) is incomplete.

Our problem is to solve Laplace’s equation, for Vi,(r,0) when r < R, and
Vout(r, 6) when r > R, subject to the boundary conditions

(1) Vin = Vouts at r = R,
(i) € aavin = ¢ —a;/om, at r = R, (4.43)
r r

(ii1) Vouw = —Egrcos6, for r > R.

(The second of these follows from Eq. 4.41, since there is no free charge at the
surface.) Inside the sphere, Eq. 3.65 says

[e¢]
Vin(r, 0) = Z A;r' Pi(cosh); (4.44)
1=0

outside the sphere, in view of (iii), we have

o0 Bl
Vou(r, 0) = —Eqr cos6 + Z P (cos ). (4.45)
=0

Boundary condition (i) requires that

o0 o0

! B,
E A; R ' Pi(cost) = —EgRcos6 + E WP](COS@),
=0 =0



194

Chapter 4  Electric Fields in Matter

sol4
! B
A/R _Rl+1’ for I # 1,
B
AlR_—E0R~|—ﬁ.

Meanwhile, condition (ii) yields

x %)
_ (+1)B
€y ZlAle IPI(COSQ) = —EO cosf — Z Rl—+21
=0 1=0
SO
_ I+ 1B
€1AR! 12_—Rl+2 Jfor 1 # 1,
2By
erAl = _EO — F
It follows that
A= B =0, forl # 1,
— _ 3 _ € — 1,3
A= €r+2EO B, = e,+2R Ey.
Evidently
3EO 3E0
Vin 9’ 6 - - 0 = — .
(r,0) €r+2rcos €r+ZZ

and hence the field inside the sphere is (surprisingly) uniform:

P;(cosB),

(4.46)

(4.47)

(4.48)

(4.49)

Example 4.8. Suppose the entire region below the plane z = 0 in Fig. 4.28 is
filled with uniform linear dielectric material of susceptibility x.. Calculate the

force on a point charge g situated a distance d above the origin.

14Remember, P;(cos#) = cos#, and the coefficients must be equal for each /, as you could prove by
multiplying by Py (cos @) sin 6, integrating from 0 to 77, and invoking the orthogonality of the Legendre

polynomials (Eq. 3.68).
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FIGURE 4.28

Solution

The surface bound charge on the xy plane is of opposite sign to g, so the force
will be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us
first calculate oy, using Eqs. 4.11 and 4.30."

UbZP'ﬁZPz=€0XeEZa

where E. is the z-component of the total field just inside the dielectric, at z = 0.
This field is due in part to ¢ and in part to the bound charge itself. From Coulomb’s
law, the former contribution is

! 1 cost) = ! qd
drey (r? 4 d?)  dmey (P24 d?)3?

where r = /x2? + y? is the distance from the origin. The z component of the field
of the bound charge, meanwhile, is —o;,/2¢, (see footnote after Eq. 2.33). Thus

1 qd o) :|

T = 0Xe [_47160 (r2+d»32  2¢

which we can solve for oy,:

1 # d
oy = —— X @ (4.50)
2m \ xe +2) (r> 4 d?)3?

Apart from the factor x./(x. + 2), this is exactly the same as the induced charge
on an infinite conducting plane under similar circumstances (Eq. 3.10).'® Evi-
dently the fotal bound charge is

Xe
= — . 4.51
qp <Xe+2)q (4.51)

15This method mimics Prob. 3.38.
16For some purposes a conductor can be regarded as the limiting case of a linear dielectric, with
Xe — 00. This is often a useful check—try applying it to Exs. 4.5, 4.6, and 4.7.
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We could, of course, obtain the field of o}, by direct integration

E= / ) oy a
= — — | O a.
4 e 22 ) 7P

But, as in the case of the conducting plane, there is a nicer solution by the method
of images. Indeed, if we replace the dielectric by a single point charge g, at the
image position (0, 0, —d), we have

1 q qb
V= + , (4.52)
ameo [¢x2+y2+<z—d>2 ¢x2+y2+(z+d)2]

in the region z > 0. Meanwhile, a charge (¢ + ¢;) at (0, 0, d) yields the potential

1
_ q+qp ’ (4.53)
dmey | Jx24+y2+ (z — d)?

for the region z < 0. Taken together, Eqs. 4.52 and 4.53 constitute a function that
satisfies Poisson’s equation with a point charge g at (0, 0, d), which goes to zero at
infinity, which is continuous at the boundary z = 0, and whose normal derivative
exhibits the discontinuity appropriate to a surface charge o;, at z = 0:

. A% B 1 Xe qd
' 9z 7=0" 27 Xe +2) (x2+ y2 + d?)32 .

Accordingly, this is the correct potential for our problem. In particular, the force
on q is:

aVv

z=0% 0z

1 . 1 . 2
F= 1 5 _ Xe ) 4; (4.54)
ey (2d)? dwey \ xe +2) 4d?

I do not claim to have provided a compelling motivation for Eqs. 4.52 and
4.53—1like all image solutions, this one owes its justification to the fact that it
works: it solves Poisson’s equation, and it meets the boundary conditions. Still,
discovering an image solution is not entirely a matter of guesswork. There are at
least two “rules of the game”: (1) You must never put an image charge into the
region where you’re computing the potential. (Thus Eq. 4.52 gives the potential
for z > 0, but this image charge gy, is at z = —d; when we turn to the region z < 0
(Eq. 4.53), the image charge (¢ + ¢g5) is at z = +d.) (2) The image charges must
add up to the correct total in each region. (That’s how I knew to use g, to account
for the charge in the region z < 0, and (g + ¢g) to cover the region z > 0.)

Problem 4.22 A very long cylinder of linear dielectric material is placed in an
otherwise uniform electric field Ey. Find the resulting field within the cylinder. (The
radius is a, the susceptibility y,, and the axis is perpendicular to E.)
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Problem 4.23 Find the field inside a sphere of linear dielectric material in an oth-
erwise uniform electric field E, (Ex. 4.7) by the following method of successive
approximations: First pretend the field inside is just Ey, and use Eq. 4.30 to write
down the resulting polarization Py. This polarization generates a field of its own,
E, (Ex. 4.2), which in turn modifies the polarization by an amount Py, which fur-
ther changes the field by an amount E,, and so on. The resulting field is Eq + E;+
E; + - - -. Sum the series, and compare your answer with Eq. 4.49.

Problem 4.24 An uncharged conducting sphere of radius a is coated with a thick
insulating shell (dielectric constant €,) out to radius b. This object is now placed in
an otherwise uniform electric field Ey. Find the electric field in the insulator.

! Problem 4.25 Suppose the region above the xy plane in Ex. 4.8 is also filled with
linear dielectric but of a different susceptibility x,. Find the potential everywhere.

4.4.3 H Energy in Dielectric Systems
It takes work to charge up a capacitor (Eq. 2.55):

1 2
w=1lcv

If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum
value by a factor of the dielectric constant,

C =€, Cyye,

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filled
capacitor is increased by the same factor. The reason is pretty clear: you have to
pump on more (free) charge, to achieve a given potential, because part of the field
is canceled off by the bound charges.

In Chapter 2, I derived a general formula for the energy stored in any electro-
static system (Eq. 2.45):

W= %szdr. (4.55)

The case of the dielectric-filled capacitor suggests that this should be changed to

1
W:%O/G,Ezdrzsz-Edr,

in the presence of linear dielectrics. To prove it, suppose the dielectric material
is fixed in position, and we bring in the free charge, a bit at a time. As p is
increased by an amount Ap, the polarization will change and with it the bound
charge distribution; but we’re interested only in the work done on the incremental
free charge:

AW = / (App)V dx. (4.56)
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Since V- D = py, Apy =V - (AD), where AD is the resulting change in D, so
AW = /[V - (AD)]V dr.

Now
V- [(AD)V]=[V - (AD)]V + AD - (VV),

and hence (integrating by parts):
AW = / V- [(AD)V]dt + /(AD) -Edr.

The divergence theorem turns the first term into a surface integral, which vanishes
if we integrate over all space. Therefore, the work done is equal to

AW = /(AD) .Edr. (4.57)

So far, this applies to any material. Now, if the medium is a linear dielectric,
then D = ¢E, so

IA(D-E)=1A(eE?) = ¢(AE)-E = (AD) -E

(for infinitesimal increments). Thus

1
AW:A(E/D-Edr>.

The total work done, then, as we build the free charge up from zero to the final
configuration, is

W= %/D -Edr, (4.58)
as anticipated.'”

It may puzzle you that Eq. 4.55, which we derived quite generally in Chap-
ter 2, does not seem to apply in the presence of dielectrics, where it is replaced
by Eq. 4.58. The point is not that one or the other of these equations is wrong,
but rather that they address somewhat different questions. The distinction is sub-
tle, so let’s go right back to the beginning: What do we mean by ‘“‘the energy
of a system”? Answer: It is the work required to assemble the system. Very

7In case you are wondering why I did not do this more simply by the method of Sect. 2.4.3, starting
with W = % [ pgV dr, the reason is that rhis formula is untrue, in general. Study the derivation of
Eq. 2.42, and you will see that it applies only to the total charge. For linear dielectrics it happens to
hold for the free charge alone, but this is scarcely obvious a priori and, in fact, is most easily confirmed
by working backward from Eq. 4.58.
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well—but when dielectrics are involved, there are two quite different ways one
might construe this process:

1. We bring in all the charges (free and bound), one by one, with tweezers, and
glue each one down in its proper final location. If this is what you mean by
“assemble the system,” then Eq. 4.55 is your formula for the energy stored.
Notice, however, that this will not include the work involved in stretching
and twisting the dielectric molecules (if we picture the positive and nega-
tive charges as held together by tiny springs, it does not include the spring
energy, %kxz, associated with polarizing each molecule).'®

2. With the unpolarized dielectric in place, we bring in the free charges, one by
one, allowing the dielectric to respond as it sees fit. If #his is what you mean
by “assemble the system” (and ordinarily it is, since free charge is what we
actually push around), then Eq. 4.58 is the formula you want. In this case
the “spring” energy is included, albeit indirectly, because the force you must
apply to the free charge depends on the disposition of the bound charge; as
you move the free charge, you are automatically stretching those “springs.”

Example 4.9. A sphere of radius R is filled with material of dielectric constant €,
and uniform embedded free charge p . What is the energy of this configuration?

Solution
From Gauss’s law (in the form of Eq. 4.23), the displacement is

%r (r <R),
D =
=1, &
?‘r—zr (r > R).
So the electric field is
p
—36(; r (r < R),
E(r) = of R3A
3—6‘0’-—21' (V > R)

The purely electrostatic energy (Eq. 4.55) is
2 R 2 0
1
wo= 2 (2 / Paxrtdr + (2L R6/ — durtdr
2 3eoe, 0 3eo g

L]
= 9¢ "7 5¢? ’

8The “spring” itself may be electrical in nature, but it is still not included in Eq. 4.55, if E is taken to
be the macroscopic field.
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But the rotal energy (Eq. 4.58) is

LI ery (_pr /R 242 PrR*N (pr R /°° L
Wy = = (—) dnrtar 4+ (P (22 —4nr?d
2 2[ 3 (3606, AR 3¢ ) ) AT

Notice that W; < W,—that’s because W, does not include the energy involved in
stretching the molecules.

Let’s check that W, is the work done on the free charge in assembling the
system. We start with the (uncharged, unpolarized) dielectric sphere, and bring in
the free charge in infinitesimal installments (dq), filling out the sphere layer by
layer. When we have reached radius r’, the electric field is

Pr r r <r’,
RI
3
.
E(r) = 3502 =t (r' <r <R),
r
/3
LI & >R
360 }’2

The work required to bring the next dg in from infinity to r’ is

R r'
dW = —dq / E-dl—i—/ E-dl
00 R
3 R 3 pr
,ofr’ / 1 prr / 1
= —d —d —d
q|: 3¢ Joo 72 T 3epe, Jp 12 "

3
prr” 1 1 /1 1
=—|=+—|—-——=]1dg.
RI2) |:R+e, r R 9

This increases the radius (r'):

dg = ,0f47'rr’2 dr',

so the fotal work done, in going fromr' =0tor’' = R, is

4mps 1 1\ (R 1 (R
W= L= (1-— / r’sdr’—i——/ P dr
3¢g | R e ) Jo e Jo

2 5 s 1
=—pR|—+1]=W. Vv
9GOIOf <56r * > ?

Evidently the energy “stored in the springs” is

2w
Weprin :WZ_WIZ—szS(Er—l).
prne 45¢pe2 "/
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I would like to confirm this in an explicit model. Picture the dielectric as a col-
lection of tiny proto-dipoles, each consisting of +¢ and —¢ attached to a spring
of constant k and equilibrium length 0, so in the absence of any field the positive
and negative ends coincide. One end of each dipole is nailed in position (like the
nuclei in a solid), but the other end is free to move in response to any imposed
field. Let dt be the volume assigned to each proto-dipole (the dipole itself may
occupy only a small portion of this space).

With the field turned on, the electric force on the free end is balanced by the
spring force;'? the charges separate by a distance d: ¢ E = kd. In our case

3epe,

The resulting dipole moment is p = ¢d, and the polarization is P = p/dz, so

or
= ———Prdr.
3ege,d? "

The energy of this particular spring is

1
AWoping = 5kd® = —6:) L prdr,
0€r

and hence the total is

Wopring = =1 / Prdr.

6¢p€,
Now
e — 1
P = cyx.E = € xe Pf = (& )pfr,
RIS 3¢,
SO

pr (& = Dpy /R 4 2T g5
Wipring = ——4n dr = R’ (¢, — 1),
PHET 6epe,  3e, , Y 2 PrRC )

and it works out perfectly.

It is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear
dielectrics, but this is false: To proceed beyond Eq. 4.57, one must assume lin-
earity. In fact, for dissipative systems the whole notion of “stored energy” loses
its meaning, because the work done depends not only on the final configuration
but on how it got there. If the molecular “springs” are allowed to have some

19Note that the “spring” here is a surrogate for whatever holds the molecule together—it includes the
electrical attraction of the other end. If it bothers you that the force is taken to be proportional to the
separation, look again at Example 4.1.
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friction, for instance, then Wiy, can be made as large as you like, by assem-
bling the charges in such a way that the spring is obliged to expand and con-
tract many times before reaching its final state. In particular, you get nonsensical
results if you try to apply Eq. 4.58 to electrets, with frozen-in polarization (see
Prob. 4.27).

Problem 4.26 A spherical conductor, of radius a, carries a charge Q (Fig. 4.29). It
is surrounded by linear dielectric material of susceptibility ., out to radius b. Find
the energy of this configuration (Eq. 4.58).

b
0 Z
a

FIGURE 4.29

Problem 4.27 Calculate W, using both Eq. 4.55 and Eq. 4.58, for a sphere of radius
R with frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy.
Which (if either) is the “true” energy of the system?

4.4.4 | Forces on Dielectrics

Just as a conductor is attracted into an electric field (Eq. 2.51), so too is a
dielectric—and for essentially the same reason: the bound charge tends to accu-
mulate near the free charge of the opposite sign. But the calculation of forces on
dielectrics can be surprisingly tricky. Consider, for example, the case of a slab of
linear dielectric material, partially inserted between the plates of a parallel-plate
capacitor (Fig. 4.30). We have always pretended that the field is uniform inside a
parallel-plate capacitor, and zero outside. If this were literally true, there would
be no net force on the dielectric at all, since the field everywhere would be per-
pendicular to the plates. However, there is in reality a fringing field around the
edges, which for most purposes can be ignored but in this case is responsible for
the whole effect. (Indeed, the field could not terminate abruptly at the edge of
the capacitor, for if it did, the line integral of E around the closed loop shown in
Fig. 4.31 would not be zero.) It is this nonuniform fringing field that pulls the
dielectric into the capacitor.

Fringing fields are notoriously difficult to calculate; luckily, we can avoid this
altogether, by the following ingenious method.”® Let W be the energy of the

20For a direct calculation from the fringing fields, see E. R. Dietz, Am. J. Phys. 72, 1499 (2004).
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Dielectric

FIGURE 4.30

%E-dl:()

FIGURE 4.31

Fringing region

system—it depends, of course, on the amount of overlap. If I pull the dielectric
out an infinitesimal distance dx, the energy is changed by an amount equal to the
work done:

dW = Fpedx, (4.59)
where Fy, is the force I must exert, to counteract the electrical force F on the
dielectric: F,e = —F. Thus the electrical force on the slab is

aw
F=——. (4.60)
dx
Now, the energy stored in the capacitor is
w=1icv?, (4.61)
and the capacitance in this case is
eow
C == (erd = xe). (4.62)

where [ is the length of the plates (Fig. 4.30). Let’s assume that the total charge
on the plates (Q = CV) is held constant, as the dielectric moves. In terms of Q,

1 2
w1l

= 4,
T (4.63)
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SO
2
F:—d—W=1gd—C=1V2d—C. (4.64)
dx 2C?dx 2 dx
But
dC €W
dx  d
and hence
€0XeW . »
=-— Ve, (4.65)

(The minus sign indicates that the force is in the negative x direction; the dielectric
is pulled into the capacitor.)

It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63
(with Q constant), in computing the force. One then obtains

P 1 V2 dC
2 dx’

which is off by a sign. It is, of course, possible to maintain the capacitor at a fixed
potential, by connecting it up to a battery. But in that case the battery also does
work as the dielectric moves; instead of Eq. 4.59, we now have

dW = Fpedx +V dQ, (4.66)

where V d Q is the work done by the battery. It follows that

dw dQ 1 _,dC ,dC 1 _,dC
i i M A @67
the same as before (Eq. 4.64), with the correct sign.

Please understand: The force on the dielectric cannot possibly depend on
whether you plan to hold Q constant or V constant—it is determined entirely
by the distribution of charge, free and bound. It’s simpler to calculate the force
assuming constant Q, because then you don’t have to worry about work done by
the battery; but if you insist, it can be done correctly either way.

Notice that we were able to determine the force without knowing anything
about the fringing fields that are ultimately responsible for it! Of course, it’s built
into the whole structure of electrostatics that V x E = 0, and hence that the fring-
ing fields must be present; we’re not really getting something for nothing here—
just cleverly exploiting the internal consistency of the theory. The energy stored
in the fringing fields themselves (which was not accounted for in this derivation)
stays constant, as the slab moves; what does change is the energy well inside the
capacitor, where the field is nice and uniform.

Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a, outer radius
b) stand vertically in a tank of dielectric oil (susceptibility x,., mass density p). The
inner one is maintained at potential V, and the outer one is grounded (Fig. 4.32). To
what height (/) does the oil rise, in the space between the tubes?
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More Problems on Chapter 4
Problem 4.29

(a) For the configuration in Prob. 4.5, calculate the force on p, due to p;, and the
force on p; due to p,. Are the answers consistent with Newton’s third law?

(b) Find the total torque on p, with respect to the center of p;, and compare it with
the torque on py about that same point. [Hint: combine your answer to (a) with

the result of Prob. 4.5.]

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway
between two large conducting plates, as shown in Fig. 4.33. Each plate makes a

D
=y

FIGURE 4.33
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small angle 6 with respect to the x axis, and they are maintained at potentials V.
What is the direction of the net force on p? (There’s nothing to calculate, here, but
do explain your answer qualitatively.)

Problem 4.31 A point charge Q is “nailed down” on a table. Around it, at radius R,
is a frictionless circular track on which a dipole p rides, constrained always to point
tangent to the circle. Use Eq. 4.5 to show that the electric force on the dipole is

o p

- 4mey R

Notice that this force is always in the “forward” direction (you can easily confirm
this by drawing a diagram showing the forces on the two ends of the dipole). Why
isn’t this a perpetual motion machine??!

Problem 4.32 Earnshaw’s theorem (Prob. 3.2) says that you cannot trap a charged
particle in an electrostatic field. Question: Could you trap a neutral (but polarizable)
atom in an electrostatic field?

(a) Show that the force on the atom is F = %aV(Ez).

(b) The question becomes, therefore: Is it possible for £ to have a local maximum
(in a charge-free region)? In that case the force would push the atom back to its
equilibrium position. Show that the answer is no. [Hint: Use Prob. 3.4(a).]*

Problem 4.33 A dielectric cube of side a, centered at the origin, carries a “frozen-
in” polarization P = kr, where £ is a constant. Find all the bound charges, and check
that they add up to zero.

Problem 4.34 The space between the plates of a parallel-plate capacitor is filled
with dielectric material whose dielectric constant varies linearly from 1 at the
bottom plate (x = 0) to 2 at the top plate (x = d). The capacitor is connected
to a battery of voltage V. Find all the bound charge, and check that the total
is zero.

Problem 4.35 A point charge g is imbedded at the center of a sphere of linear
dielectric material (with susceptibility x, and radius R). Find the electric field, the
polarization, and the bound charge densities, p, and o,. What is the total bound
charge on the surface? Where is the compensating negative bound charge located?

Problem 4.36 At the interface between one linear dielectric and another, the electric
field lines bend (see Fig. 4.34). Show that

tan6,/tan 6, = €, /€y, (4.68)

assuming there is no free charge at the boundary. [Comment: Eq. 4.68 is reminiscent
of Snell’s law in optics. Would a convex “lens” of dielectric material tend to “focus,”
or “defocus,” the electric field?]

2IThis charming paradox was suggested by K. Brownstein.
2Interestingly, it can be done with oscillating fields. See K. T. McDonald, Am. J. Phys. 68, 486
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FIGURE 4.34

Problem 4.37 A point dipole p is imbedded at the center of a sphere of linear
dielectric material (with radius R and dielectric constant ¢,). Find the electric po-
tential inside and outside the sphere.

A pcosf l_|_2r3 (e, —1) <R pcosf 3 >R
nswer: — , (r = o =), r=
4rer? R3 (¢, +2) dregr? \ e +2

Problem 4.38 Prove the following uniqueness theorem: A volume )V contains a
specified free charge distribution, and various pieces of linear dielectric material,
with the susceptibility of each one given. If the potential is specified on the bound-
aries S of V (V = 0 at infinity would be suitable) then the potential throughout V
is uniquely determined. [Hint: Integrate V - (V3D3) over V.]

Yy

FIGURE 4.35

Problem 4.39 A conducting sphere at potential V; is half embedded in linear
dielectric material of susceptibility y., which occupies the region z < 0 (Fig. 4.35).
Claim: the potential everywhere is exactly the same as it would have been in the
absence of the dielectric! Check this claim, as follows:

(a) Write down the formula for the proposed potential V (r), in terms of Vj, R,
and r. Use it to determine the field, the polarization, the bound charge, and the
free charge distribution on the sphere.

(b) Show that the resulting charge configuration would indeed produce the potential
V(r).

(c) Appeal to the uniqueness theorem in Prob. 4.38 to complete the argument.

(d) Could you solve the configurations in Fig. 4.36 with the same potential? If not,
explain why.
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vy v,
(a) (b)
FIGURE 4.36

Problem 4.40 According to Eq. 4.5, the force on a single dipole is (p - V)E, so the
net force on a dielectric object is

F= / (P - V)E. dr. (4.69)

[Here E. is the field of everything excepr the dielectric. You might assume that it
wouldn’t matter if you used the fotal field; after all, the dielectric can’t exert a force
on itself. However, because the field of the dielectric is discontinuous at the location
of any bound surface charge, the derivative introduces a spurious delta function, and
it is safest to stick with E..] Use Eq. 4.69 to determine the force on a tiny sphere,
of radius R, composed of linear dielectric material of susceptibility x., which is
situated a distance s from a fine wire carrying a uniform line charge A.

Problem 4.41 In a linear dielectric, the polarization is proportional to the field:
P = ¢y x.E. If the material consists of atoms (or nonpolar molecules), the induced
dipole moment of each one is likewise proportional to the field p = «¢E. Question:
What is the relation between the atomic polarizability « and the susceptibility x,?

Since P (the dipole moment per unit volume) is p (the dipole moment per atom)
times N (the number of atoms per unit volume), P = Np = N«E, one’s first incli-
nation is to say that

Xe = &. (4.70)

€0

And in fact this is not far off, if the density is low. But closer inspection reveals
a subtle problem, for the field E in Eq. 4.30 is the rotal macroscopic field in the
medium, whereas the field in Eq. 4.1 is due to everything except the particular atom
under consideration (polarizability was defined for an isolated atom subject to a
specified external field); call this field E.)s.. Imagine that the space allotted to each
atom is a sphere of radius R, and show that

N
E= <1 - —0‘) E.... @.71)
360

Use this to conclude that
Na/e

X = T " Naj3e’

or

a=ﬁ<€’_l>. 4.72)
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Figure 10.21.

(a) Divide the polarized sphere into polarized
rods, and replace each rod by patches of charge
on the surface of the sphere. (b) A ball of
positive volume charge density and a ball of
negative volume charge density, slightly
displaced, are equivalent to a distribution of
charge on the spherical surface.

rest of the atom. This makes it easy for the electron to leave the residual
P~ ion and join the conduction band, as in Fig. 4.11(a).

This brings us to a more general problem. What if the space in
our system is partly filled with dielectric and partly empty, with electric
fields in both parts? We’ll begin with a somewhat artificial but instructive
example, a polarized solid sphere in otherwise empty space.

10.9 The field of a polarized sphere

The solid sphere in Fig. 10.21(a) is supposed to be uniformly polarized,
as if it had been carved out of the substance of the slab in Fig. 10.16(a).
What must the electric field be like, both inside and outside the sphere?
We take P as usual to denote the density of polarization, constant in mag-
nitude and direction throughout the volume of the sphere. The polarized
material could be divided, like the slab in Fig. 10.16(a), into columns par-
allel to P, and each of these replaced by a charge of magnitude
P x (column cross section) at top and bottom. Thus the field we seek
is that of a surface charge distribution spread over a sphere with density
o = Pcos 6. The factor cos 0 enters, as should be evident from the figure,
because a column of cross section da intercepts on the sphere a patch of
surface of area da/ cos . Figure 10.21(b) is a cross section through this
shell of equivalent surface charge in which the density of charge has been
indicated by the varying thickness of the black semicircle above (positive
charge density) and the light semicircle below (negative charge density).

If it has not already occurred to you, this figure may suggest that
we think of the polarization P as having arisen from the slight upward
displacement of a ball filled uniformly with positive charge of volume
density p, relative to a ball of negative charge of density —p. That would
leave uncompensated positive charge poking out at the top and nega-
tive charge showing at the bottom, varying in amount precisely as cos
over the whole boundary.” In the interior, where the positive and nega-
tive charge densities still overlap, they would exactly cancel one another.
Taking this view, we see a very easy way to calculate the field outside the
shell of surface charge. Any spherical charge distribution, as we know,
has an external field the same as if its entire charge were concentrated at
the center. So the superposition of two spheres of total charge Q and —Q,
with their centers separated by a small displacement s, will produce an
external field the same as that of two point charges Q and —Q, a distance
s apart. This is just a dipole with dipole moment py = Qs.

A microscopic description of the polarized substance leads us to the
same conclusion. In Fig. 10.22(a) the molecular dipoles actually respon-
sible for the polarization P have been crudely represented as consisting
individually of a pair of charges g and —g, a distance s apart, to make

4 This follows from the fact that the thickness of the “semicircle” at a given point is the
radial component of the vertical vector representing the displacement s of the top
sphere relative to the bottom sphere. You can quickly show that this radial component
is scos 6.
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a dipole moment p = gs. With N of these per cubic meter, we have
P = Np = Ngs, and the total number of such dipoles in the sphere is
4r/ 3)r(3)N . The positive charges, considered separately (Fig. 10.22(b)),
are distributed throughout a sphere with total charge content
Q0= @n/ 3)r8Nq, and the negative charges occupy a similar sphere with
its center displaced (Fig. 10.22(c)). Clearly each of these charge distri-
butions can be replaced by a point charge at its center, if we are con-
cerned with the field well outside the distribution. “Well outside” means
far enough away from the surface so that the actual graininess of the
charge distribution doesn’t matter, and of course that is something we
always have to ignore when we speak of the macroscopic fields.

So, for present purposes, the picture of overlapping spheres of uni-
form charge density and the description in terms of actual dipoles in a
vacuum are equivalent,5 and show that the field outside the distribution
is the same as that of a single dipole located at the center. The moment
of this dipole py is simply the total polarization in the sphere:

4m 4 4
po = 0s = —ryNgs = —r

3
3 3 oP-
The quantities Q and s have, separately, no significance and may now be
dropped from the discussion.
The external field of the polarized sphere is that of a central dipole
Po, not only at a great distance from the sphere but also right down to
the surface, macroscopically speaking. All we had to do to construct
Fig. 10.23, a representation of the external field lines, was to block out a
circular area from Fig. 10.6.
The internal field is a different matter. Let’s look at the electric
potential, ¢ (x,y,z). We know the potential at all points on the spherical

(10.43)

5 This may have been obvious enough, but we have labored the details in this one case to
allay any suspicion that the “‘smooth-charge-ball” picture, which is so different from
what we know the interior of a real substance to be like, might be leading us astray.

Figure 10.22.

A sphere of lined-up molecular dipoles (a) is
equivalent to superposed, slightly displaced,
spheres of positive (b) and negative (c) charges.

N

N\
L)
N

The field outside a uniformly polarized sphere is
exactly the same as that of a dipole located at
the center of the sphere.
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Figure 10.24.

The field of the uniformly polarized sphere, both
inside and outside.

boundary because we know the external field. It is just the dipole poten-
tial, pocos@/4mwegr?, which on the spherical boundary of radius ry
becomes

cosf _ Prgcos %

¢ = po (10.44)

4 Eor(z) N 3ep '
where we have used Eq. (10.43). Since rgcost = z, we see that the
potential of a point on the sphere depends only on its z coordinate:

Pz
¢ =— (10.45)

360
The problem of finding the internal field has boiled down to this:
Eq. (10.45) gives the potential at every point on the boundary of the
region, inside which ¢ must satisfy Laplace’s equation. According to the
uniqueness theorem we proved in Chapter 3, that suffices to determine ¢
throughout the interior. If we can find a solution, it must be the solution.
Now the function Cz, where C is any constant, satisfies Laplace’s equa-
tion, so Eq. (10.45) has actually handed us the solution to the potential
in the interior of the sphere. That is, ¢in, = Pz/3€p. The electric field

associated with this potential is uniform and points in the —z direction:

Foo_fn_ 0 <E> - (10.46)

0z 3z 3¢ 30

As the direction of P was the only thing that distinguished the z axis, we
can write our result in more general form:

P
Eipp= —— (10.47)
360

This is the macroscopic field E in the polarized material.

Figure 10.24 shows both the internal and external fields. At the upper
pole of the sphere, the strength of the upward-pointing external field is,
from Eq. (10.17) or Eq. (10.18) for the field of a dipole,

2p0  24nrgP/3) 2P

Cdmeor’  dmegry 3o

which is just twice the magnitude of the downward-pointing internal
field.

This example illustrates the general rules for the behavior of the field
components at the surface of a polarized medium. E is discontinuous at
the boundary of a polarized medium, exactly as it would be at a surface
in vacuum that carried a surface charge density o = P, . The symbol P
stands for the component of P normal to the surface outward (which in
the present case is P| = Pcosf). It follows that E | , the normal com-
ponent of E, must change abruptly by an amount P /ey; whereas E|,
the component of E parallel to the boundary, remains continuous, that is,
has the same value on both sides of the boundary (Fig. 10.25). Indeed,

(outside, at top), (10.48)

Z
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at the north pole of our sphere, the net change in E, is 2P/3¢y —
(—=P/3¢q), or P/eg.

Example (Continuity of E|) For our polarized sphere, let’s check that the
component of E parallel to the surface is continuous from inside to outside every-
where on the sphere. From Eq. (10.47) the internal field has magnitude P/3¢q and
points downward, so Ehn is obtained by simply tacking on a factor of sin#. That

is, EI" = Psin6 /3€p. The tangential component of the external dipole field is
given by the Ey in Eq. (10.18):

out _ Posing (47”813/3) sin) Psinf

= dreor? , (10.49)

4 eorg 3¢

which equals Ehn as desired.
Note that, for 0 < 6 < 7, the sin ¢ factor is positive, so Ehn and Eﬁ“t point in

the positive 6 direction, that is, away from the north pole. Similarly, for
T <6<2m, Eh“ and Eﬁut point in the negative @ direction, which again is away

from the north pole (because positive 0 is directed clockwise around the full cir-
cle). A quick glance at Fig. 10.24 shows that the field lines are consistent with
these facts.

The task of Exercise 10.36 is to use the explicit forms of the internal and
external fields to show that £ | has a discontinuity of P, /e everywhere on the
surface of the sphere.

None of these conclusions depends on how the polarization of the
sphere was caused. Assuming any sphere is uniformly polarized,
Fig. 10.24 shows its field. Onto this can be superposed any field from
other sources, thus representing many possible systems. This will not
affect the discontinuity in E at the boundary of the polarized medium.
The above rules therefore apply in any system, the discontinuity in E
being determined solely by the existing polarization.

10.10 A dielectric sphere in a uniform field

As an example, let us put a sphere of dielectric material characterized
by a dielectric constant « into a homogeneous electric field Eg like the
field between the parallel plates of a vacuum capacitor, Fig. 10.26. Let
the sources of this field, the charges on the plates, be far from the sphere
so that they do not shift as the sphere is introduced. Then whatever the
field may be in the vicinity of the sphere, it will remain practically E at
a great distance. This is what is meant by putting a sphere into a uniform
field. The total field E is no longer uniform in the neighborhood of the
sphere. It is the sum of the uniform field E¢ of the distant sources and a
field E' generated by the polarized matter itself:

E=E)+E. (10.50)

Figure 10.25.

The change in E at the boundary of a polarized
dielectric: E|| is the same on both sides of the
boundary; E | increases by P /¢ in going from
dielectric to vacuum. (Note that £ and P/¢( are
not drawn to the same scale.)

E,

4+ttt

Figure 10.26.

The sources of the field Eq remain fixed. The
dielectric sphere develops some polarization P.
The total field E is the superposition of Eg and
the field of this polarized sphere.
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Figure 10.27.
The total field E, both inside and outside the
dielectric sphere.

This relation is valid both inside and outside the sphere. The field E’
depends on the polarization P of the dielectric, which in turn depends on
the value of E inside the sphere:

P = x.€0Ein = (k — 1)eoEj,. (10.51)

Remember that the E that appears in this expression involving x, is the
total electric field.

We don’t know yet what the total field E is; we know only that
Eq. (10.51) has to hold at any point inside the sphere. If the sphere
becomes uniformly polarized, an assumption that will need to be jus-
tified by our results, the relation between the polarization P of the sphere
and its own field at points inside, E/ , is given by Eq. (10.47):°

n’
P
“3e
Substituting the P from Eq. (10.51) into Eq. (10.52) quickly gives E{
in terms of E;,; we obtain E{n = —(k — 1)E;jp/3. Substituting this into
Eq. (10.50) gives the total field inside the sphere as

E, = (10.52)

Kk —1 3
Ein = EO - TEin — Ein = (24-_/() E() (1053)

Because « is greater than 1, the factor 3/(2 + «) will be less than 1; the
field inside the dielectric is weaker than E(. The polarization is

—1
P = (c — DeoEyy —> P=3(K >6()E() (10.54)
K+2

The assumption of uniform polarization is now seen to be self-consistent.”
To compute the total field E,; outside the sphere we must add vectorially
to Eg the field of a central dipole with dipole moment equal to P times
the volume of the sphere. Some field lines of E, both inside and outside
the dielectric sphere, are shown in Fig. 10.27.

To summarize, we found E;, by effectively equating two different
expressions for the field E{ caused by the polarized matter. One expres-
sion is simply the statement of superposition, E{ = E;j, — Eo. The other
expression is E{ = —(k — 1)Ej,/3, which comes from the facts that E_
is proportional to P (in the case of a sphere) and that P is proportional to
E;, (in a linear dielectric).

6 In Eq. (10.47) we were using the symbol E;,,, without the prime, for this field. In that
case it was the only field present.
7 That is what makes this system easy to deal with. For a dielectric cylinder of finite
length in a uniform electric field, the assumption would not work. The field E’ of a
uniformly polarized cylinder — for instance one with its length about equal to its
diameter — is not uniform inside the cylinder. (What must it look like?) Therefore
Ei, = Eo + E{n cannot be uniform — but in that case P = x.Ei, could not be
uniform after all. In fact, it is only dielectrics of ellipsoidal shape, of which the
sphere is a special case, that acquire uniform polarization in a uniform field.
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10.11 The field of a charge in a dielectric medium,
and Gauss’s law

Suppose that a very large volume of homogeneous linear dielectric has
somewhere within it a concentrated charge Q, not part of the regular
molecular structure of the dielectric. Imagine, for instance, that a small
metal sphere has been charged and then dropped into a tank of oil. As
was stated at the end of Section 10.8, the electric field in the o0il is simply
1/k times the field that Q would produce in a vacuum:

Q
E=——. 10.55
4mepkr? ( )
The product €pk is commonly denoted by €, so we can write
Y €
E=—"— where € =Keg — «k=—. (10.56)
4er? €

The quantity € is known as the permittivity of the dielectric. The vacuum
permittivity, also called the permittivity of free space, is simply €.

It is interesting to see how Gauss’s law works out. The surface inte-
gral of E (which is the macroscopic, or space average, field, remember)
taken over a sphere surrounding Q, gives Q/xe€gp, or Q/e, if we believe
Eq. (10.55), and not Q/ep. Why not? The answer is that Q is not the
only charge inside the sphere. There are also all the charges that make
up the atoms and molecules of the dielectric. Ordinarily any volume of
the oil would be electrically neutral. But now the oil is radially polar-
ized, which means that the charge Q, assuming it is positive, has pulled
in toward itself the negative charge in the oil molecules and pushed away
the positive charges. Although the displacement may be only very slight
in each molecule, still on the average any sphere we draw around Q
will contain more oil-molecule negative charge than oil-molecule pos-
itive charge. Hence the net charge in the sphere, including the “foreign”
charge Q at the center, is less than Q. In fact, itis Q/«k.

It is often useful to distinguish between the foreign charge Q and
the charges that make up the dielectric itself. Over the former we have
some degree of control — charge can be added to or removed from an
object, such as the plate of a capacitor. This is often called free charge.
The other charges, which are integral parts of the atoms or molecules
of the dielectric, are usually called bound charge. Structural charge
might be a better name. These charges are not mobile; they are more
or less elastically bound, contributing, by their slight displacement, to
the polarization.

One can devise a vector quantity that is related by something like
Gauss’s law to the free charge only. In the system we have just exam-
ined (a point charge Q immersed in a dielectric), the vector kE has this
property. That is, [ «E - da, taken over some closed surface S, equals
Q/eo if S encloses Q, and zero if it does not. By superposition, this must
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Figure 10.28.

Molecular dipoles arranged so that div P > 0.
Note the concentration of negative charge in the
middle, consistent with Eq. (10.61).

hold for any collection of free charges described by a free-charge density
Prree (X, ¥, 2) in an infinite homogeneous linear dielectric medium:

1
/KE-da = — / Pfree AV, (10.57)
N € Jv

where V is the volume enclosed by the surface S. An integral relation
like this implies a “local” relation between the divergence of the vector
field «E and the free charge density:

div (cE) = e

(10.58)

Since « has been assumed to be constant throughout the medium,
Eq. (10.58) tells us nothing new. However, it can help us to isolate the
role of the bound charge. In any system whatsoever, the fundamental
relation (namely Gauss’s law) between electric field E and total charge
density pfree + Pbound Temains valid:

. 1
divE = a(ﬂfree ~+ Pbound)- (10.59)

Subtracting Eq. (10.59) from Eq. (10.58) yields

div (k — DE = —2bound (10.60)

€0

According to Eq. (10.40), (k — HE = P/¢q for a linear dielectric, so
Eq. (10.60) implies that

divP = — Pbound (10.61)

Equation (10.61) states a local relation. It cannot depend on condi-
tions elsewhere in the system, nor on how the particular arrangement of
bound charges is maintained. Any arrangement of bound charge that has
a certain local excess, per unit volume, of nuclear protons over atomic
electrons must represent a polarization with a certain divergence. So,
although we derived Eq. (10.61) by using relations pertaining to linear
dielectrics, it must in fact hold universally, not just in an unbounded lin-
ear dielectric. It doesn’t matter how the polarization comes about. (See
Problem 10.11 for a general proof.) You can get a feeling for the identity
expressed in Eq. (10.61) by imagining a few polar molecules arranged to
give a polarization with a positive divergence (Fig. 10.28). The dipoles
point outward, which necessarily leaves a little concentration of nega-
tive charge in the middle. Of course, Eq. (10.61) refers to averages over
volume elements so large that P and ppoung can be treated as smoothly
varying quantities.

From Egs. (10.59) and (10.61), both of which are true in any system
whatsoever, we get the relation

div (€0E + P) = piree. (10.62)
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This is quite independent of any relation between E and P; it is not lim-
ited to linear dielectrics (where P is proportional to E).

It is customary to give the combination €y E + P a special name, the
electric displacement vector, and its own symbol, D. That is, we define
D by

D=¢FE+P (10.63)

and Eq. (10.62) becomes

divD = pree (10.64)

This relation, or equivalently Eq. (10.62), holds in any situation in which
the macroscopic quantities P, E, and p can be defined.

If additionally we are dealing with a linear dielectric, then by com-
paring Eqgs. (10.58) and (10.64) we see that D is simply «€oE, or

D =¢E (for a linear dielectric). (10.65)

This alternatively follows from Eq. (10.63) by using Eq. (10.41) to write
P as x.€oE, and then using Eq. (10.42) to write 1 4+ x. as k.

The appearance of Eq. (10.64) may suggest that we should look on
D as a vector field whose source is the free charge distribution pfree (up
to a factor of ¢p), in the same sense that the total charge distribution p
is the source of E. That would be wrong. The electrostatic field E is
uniquely determined — except for the addition of a constant field — by
the charge distribution p because, supplementing the law divE = p /e,
there is another universal condition, curl E = 0. It is nof true, in general,
that curl D = 0. Thus the distribution of free charge is not sufficient to
determine D through Eq. (10.64). Something else is needed, such as the
boundary conditions at various dielectric surfaces. The boundary con-
ditions on D are of course merely an alternative way of expressing the
boundary conditions involving E and P, already stated near the end of
Section 10.9 and in Fig. 10.25.

Example (Continuity of D;) For our polarized sphere in Section 10.9, we
saw that E) was continuous across the boundary whereas £ was not. These
boundary conditions hold for any shape of polarized material. It turns out that the
opposite conditions are true for D. That is, D | is continuous across the boundary
whereas D) is not. You can derive these boundary conditions in Problem 10.12.
For now, let’s just verify that D is continuous across the boundary of our polar-
ized sphere.

Inside the sphere, we have E = —P/3¢(, so the displacement vector is
D = ¢g(—P/3¢p) + P = 2P/3. The radial component of this is
; ; 2Pcost
D'=D!" = 3 (10.66)

Outside the sphere, E is the field due to a dipole with pg = (47 R3/3)P. The
radial component of the dipole field is £ = pg cos6 /2w 60R3. In terms of P this
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becomes E, = 2P cosf/3¢p. Since P = 0 outside the sphere, the external D is
obtained by simply multiplying the external E by ¢(. Therefore
2P cos6
DM =Dt = — (10.67)

This equals the above Din, as desired.

The task of Exercise 10.41 is to use the explicit forms of the internal and
external fields to find the discontinuity in D everywhere on the surface of the
sphere.

In the approach we have taken to electric fields in matter, the intro-
duction of D is an artifice that is not, on the whole, very helpful. We
have mentioned D because it is hallowed by tradition, beginning with
Maxwell,® and the student is sure to encounter it in other books, many of
which treat it with more respect than it deserves.

Our essential conclusions about electric fields in matter can be sum-
marized as follows:

(1) Matter can be polarized, its condition being described completely,
so far as the macroscopic field is concerned, by a polarization den-
sity P, which is the dipole moment per unit volume. The contribu-
tion of such matter to the electric field E is the same as that of a
charge distribution ppound, €xisting in vacuum and having the den-
Sity ppound = —div P. In particular, at the surface of a polarized sub-
stance, where there is a discontinuity in P, this reduces to a surface
charge of density o = —AP, . Add any free charge distribution that
may be present, and the electric field is the field that this total charge
distribution would produce in vacuum. This is the macroscopic field
E both inside and outside matter, with the understanding that inside
matter it is the spatial average of the true microscopic field.

(2) If P is proportional to E in a material, we call the material a linear
dielectric. We define the electric susceptibility . and the dielec-
tric constant k characteristic of that material as y, = P/¢E and
k = 1+ x.. Free charges immersed in a linear dielectric give rise to
electric fields that are 1/« times as strong as the same charges would
produce in vacuum.

10.12 A microscopic view of the dielectric
The polarization P in the dielectric is simply the large-scale manifesta-
tion of the electric dipole moments of the atoms or molecules of which

8 The prominence of D in Maxwell’s formulation of electromagnetic theory, and his
choice of the name displacement, can perhaps be traced to his inclination toward a kind
of mechanical model of the “aether.” Whittaker has pointed out in his classic text
(Whittaker, 1960) that this inclination may have led Maxwell himself astray at one
point in the application of his theory to the problem of reflection of light from a
dielectric.



